How many electrons are found in a Cobalt +3 ion?

How many electrons are found in a Bromine -1 ion?

## What is the charge on the Titanium in the following compound: Ti<sub>2</sub>O<sub>3</sub>?

What is the charge on the Sulfur in the hydrogen sulfate ion (HSO<sub>4</sub>-1)?

Which of the following reactions IS NOT redox?

- a.  $SO_3(g) + H_2O(I) \rightarrow H_2SO_4(aq)$
- b. HCl (aq) + NaOH (aq)  $\rightarrow$  H<sub>2</sub>O (l) + NaCl (aq)
- c. Ba (s) +  $Cl_2$  (g)  $\rightarrow$  Ba $Cl_2$  (s)
- d.  $Mg(s) + Br_2(I) \rightarrow MgBr_2(s)$

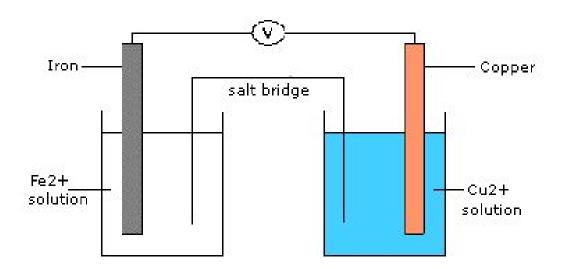
In the following redox reaction, identify the species oxidized and the species reduced.

 $Mg + 2 HCI \rightarrow MgCl_2 + H_2$ 

For the given redox reaction, write the reduction and oxidation ½ reactions. (label which is which)

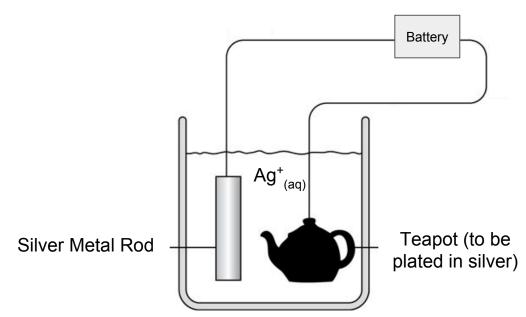
$$2 \text{ Li} + \text{Na}_2\text{O} \rightarrow \text{Li}_2\text{O} + 2 \text{ Na}$$

For the given redox reaction, write the net ionic equation.


Fe + 2 AgNO<sub>3</sub>  $\rightarrow$  Fe(NO<sub>3</sub>)<sub>2</sub> + 2 Ag

Would the following redox reactions happen spontaneously? For each:

- → Explain why or why not
- → If NOT, propose a new solid metal that *could be used* that *would* react spontaneously.
- a.  $Cr + BaCl_2 \rightarrow CrCl_2 + Ba$
- b.  $3 \text{ Rb} + \text{Fe}_2\text{O}_3 \rightarrow 3 \text{ Rb}_2\text{O} + 2 \text{ Fe}$
- c.  $Mn + ZnBr_2 \rightarrow MnBr_2 + Zn$


## For the cell below:

- → identify if this is a voltaic or an electrolytic cell
- → identify which electrode will act as the anode and which will act as the cathode.
- → identify who is oxidized and who is reduced
- → write the ½ reactions and the net ionic equation
- → identify the direction of electron flow



## For the cell below:

- → identify if this is a voltaic or an electrolytic cell
- → identify which electrode will act as the anode and which will act as the cathode.
- → identify who is oxidized and who is reduced
- → write the ½ reactions and the net ionic equation
- → identify the direction of electron flow

