### Proving Triangles Congruent: Common Cycles

The key to using the givens is knowing your vocabulary. Our goal is to find corresponding parts (sides or angles) of triangles that we can prove congruent. Your job is to know which vocabulary leads to which congruent parts.



In addition to the givens there are three items that you can introduce into a proof from the picture and do not require any prior information. These are our FREEBIES!

| and do not require any prior informati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on. These are out FREEDIN | 231                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|
| Vertical Angles  D C B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Statements  OLDCE = LACB  | Reasons  O Vertical 2's ore  |
| Reflexive Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Statements  () IJ = IJ    | Reasons  (D) Reflexsive Prop |
| <u>Linear Pair</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Statements                | Reasons                      |
| 1/2<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1) 41 and 42              | 1) If 2 lines intersect      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | form linear pour          | then adjacent is form        |
| TO TO THE PART OF | 2 21+22=180               | 2 If 2 2's form a            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | linear pair then the         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | are supple mentery           |

Using the givens and the FREEBIES in combination leads to sets of steps that occur together in many different proofs. These are called *cycles*. Learning these cycles will greatly assist you when working through proofs.

- Transitive Property
- Congruent Supplements
- Congruent Complements

- Segment Addition/Subtraction
- Angle Addition/Subtraction
- Congruent Segment/Angle Bisectors



## Are these triangles congruent???

- 1. Is there enough information to prove that two triangles are congruent?
- 2. If so, what postulate/theorem would you use: (1) S-S-S, (2) S-A-S, (3) A-S-A, (4) A-A-S

3. If two triangles are congruent, write a congruence statement (example:  $\triangle ABC \cong \triangle DEF$ )



2. K

3. Given:  $\overline{XZ} \perp \overline{WY}$ ;  $\overline{XZ}$  bisects  $\angle WXY$ 





5. Given:  $\overline{DG} \parallel \overline{EF} \mid \overline{DE} \mid \mid \overline{FG}$ 





Statement:



Congruent? (Y/N) 1
Why? 5A5
Statement:

DVUW = ATUW



# Congruent Triangles Theorems Practice Proofs

Given:  $XZ \perp WY$ : XZ bisects  $\angle WXY$ 

**Prove:**  $\triangle WXZ \cong \triangle YXZ$ 



#### Statements

#### Reasons

(1) XZLWY, XZ bisects KWXY

2) 41 2 62

13=14

XZ = XZ

5) AWXZ= AYXZ

) If 2 segments are L then 2 = 90° are formed

3) If a segment bisects on <

2 = is one formed

4) Reflexsive Prop

5.

Given:  $\overline{DG} \parallel \overline{EF}$ ;  $\overline{DE} \parallel \overline{FG}$ 

**Prove:**  $\triangle DEG \cong \triangle FGE$ 



### Statements

#### Reasons



2) 41 = 42 L3= L4

3) EG = EG

GIVEN

2) If Il lines are cut by a tronsversal then alt

int is are formed

3) Reflexsive Prop

ADEG = AFGE (4) ASA



6.

Given:  $\overline{TU} \cong \overline{UV}$ ;  $\overline{UW}$  bisects  $\angle TUV$ 

**Prove:**  $\triangle WUT \cong \triangle WUV$ 



| () Tu=uv, uw bisects. |        |    |     |  |  |
|-----------------------|--------|----|-----|--|--|
|                       | (1) Tu | 21 | UV, |  |  |

| Statements | Reasons |
|------------|---------|

- Given
- 2) If a segment bisects on < then 2 3 e's are

formed

- 3) Reflexsive Prop



Given:  $\overline{BD} \cong \overline{CE}$ 

**Prove:**  $\triangle CBE \cong \triangle DEB$ 



|    |    | Statements |          | Reasons |  |
|----|----|------------|----------|---------|--|
| BO | ペニ | CE         | OBE EXCE | O Give  |  |

- BESBE
- 3) ACBE = ADEB



D Given

leasur Pap