GRADE 8 | MC MATH^TTIPS FOR PARENTS

KEY CONCEPT OVERVIEW

Topic C extends students' work with constant rate as it applies to the **slope** of a line. Students determine the slope by using any two points from the graph of a line. Students then apply the slope of the line to the **slope**-**intercept form** to find the equation of that line. For example, if the slope is 3, the slope-intercept form of the line could be y = 3x + 8. Last, students compare various proportional relationships represented in graphs, tables, equations, and descriptions.

You can expect to see homework that asks your child to do the following:

- Determine whether the slope of a line is positive or negative, and then find the exact value of the slope or *y*-**intercept point**. The data used may be given in graphs, tables, equations, or descriptions.
- Confirm that the slope of a line stays the same when using two different points on the line to determine the slope.
- Using the properties of equality, transform an equation from **standard form** to slope-intercept form and vice versa.
- Given points on a line—or the graph, table, equation, or description of the line—determine one or more of the other representations (i.e., points, graph, table, equation, or description) of the line.
- Determine whether two equations result in the same line when graphed.
- Find and graph various solutions to an equation.

SAMPLE PROBLEMS (From Lesson 22) _

A faucet leaks at a constant rate of 7 gallons per hour. Suppose *y* gallons leak in *x* hours. Express the situation as a linear equation in two variables.

$\frac{y}{x} = 7 \quad or \ y = 7x$

Another faucet leaks at a constant rate, and the table below shows the number of gallons, *y*, that leak in *x* hours.

Number of Hours	Number of Gallons
(x)	(y)
2	13
4	26
7	45.5
10	65

Determine the rate at which the second faucet leaks.

Let m represent the rate at which this faucet leaks in gallons per hour.

$$m = \frac{(26-13)}{(4-2)}$$

$$m = \frac{13}{2}$$

$$m = 6.5$$

The second faucet leaks at a rate of 6.5 gallons per hour.

Which faucet has the worse leak? That is, which

faucet leaks more water over a given time interval?

The first faucet has the worse leak because the rate is greater: 7 gallons per hour compared to 6.5 gallons per hour.

Additional sample problems with detailed answer steps are found in the Eureka Math Homework Helpers books. Learn more at Great Minds.org.

HOW YOU CAN HELP AT HOME

You can help at home in many ways. Here are some tips to help you get started.

- Give your child proportional relationships in different forms (e.g., an equation such as $y = \frac{5}{2}x 6$ and a description such as "Mary types at a rate of $3\frac{1}{3}$ words per minute."). Challenge him to determine which situation has the greater rate. (Mary has a greater rate.) Equations and constant rate descriptions like these can be found in many of the lessons in this topic.
- Use class examples to find the slope of a situation presented in different forms. Give your child two points, a table of points, a graph, an equation, or a description of a situation, and ask her to find the slope of the line that represents the situation.
- Write a two-variable equation, and ask your child to transform the equation such that it says "y =" or "p =" or that one of the variables equals the rest. You can find these examples in the lessons, or you can make up equations yourself. For example, 2x + 3y = -6 would transform to $y = -\frac{2}{3}x 2$ when rewriting the equation in slope-intercept form, or "y =".

TERMS

Intercept point: The point (0, *b*) at which a line intersects the *y*-axis where *b* is the *y*-value of the *y*-intercept point. There is also an *x*-intercept point, (*x*, 0), where the line intersects the *x*-axis.

Slope: A number that describes the steepness or slant of a line. The unit rate (e.g., number of miles per hour) or rate of change (how one quantity changes in relation to another) is often interpreted as the slope of a graph. Lines that go up from left to right have a positive slope, and lines that go down from left to right have a negative slope. The slope, *m*, of a line can be found using the following equation:

 $m = \frac{\text{difference in } y \text{-values}}{\text{difference in } x \text{-values}} = \frac{p_2 - r_2}{p_1 - r_1} = \frac{y_2 - y_1}{x_2 - x_1}.$

Slope-intercept form of a linear equation: A linear equation written as y = mx + b, where *m* represents the slope of the line and *b* represents the *y*-value of the *y*-intercept point.

Standard form of a linear equation: The standard form of a linear equation is written as ax + by = c (e.g., 2x + 3y = 17).

For more resources, visit » Eureka.support