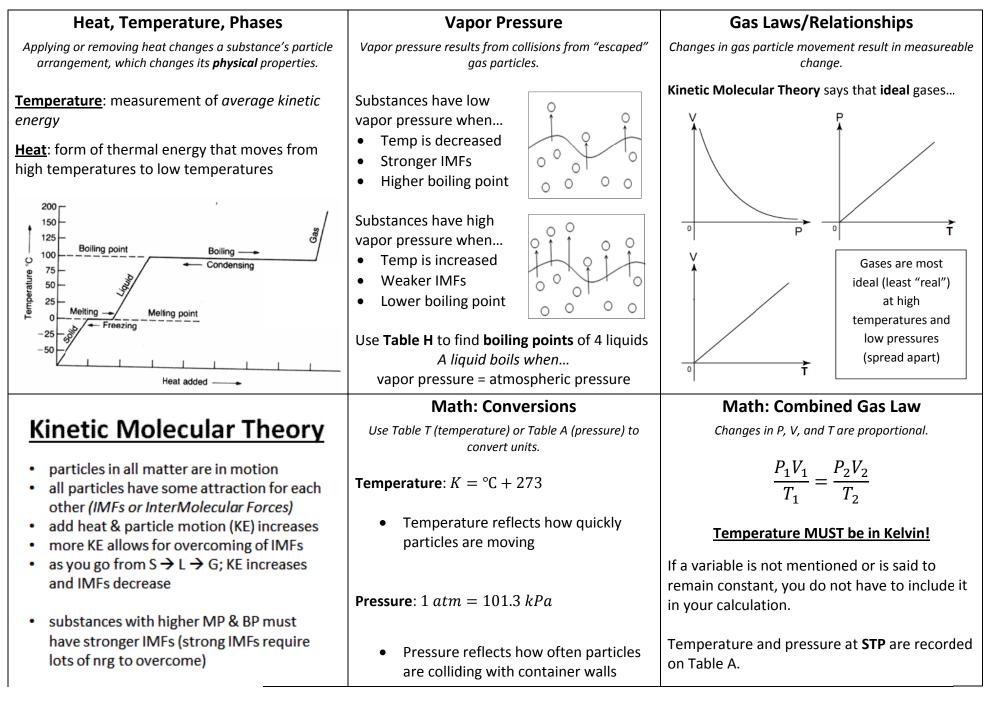

Unit 2 - Atomic Concepts



UNIT 3: COMPOUND FORMATION SUMMARY

Atoms to lons	lonic bonds		Covalent bonds	
To form an ion, an atom needs to gain or lose electrons. This changes the atom's size!	Ionic bonds hold cations and anions together		Covalent (molecular) bonds hold electron- greedy nonmetals together	
<u>Cation</u> : lose electrons to get + charge $Mg \cdot \frac{10322e}{Mg} \qquad Mg \end{bmatrix}^{2+}$ $(12pt)_{2} \otimes 2 \qquad (12pt)_{2} \otimes 2$ <u>Anion</u> : gain electrons to get - charge	cation/anion from Electrons are tran	Mg Fz I catron; 2 anrons and a non-metal OR a	Hold together	shared between nonmetals the nonmetals of the
• F: gain le • F: (qpt) 2 7 (lon) 2 7 Naming lonic Compounds	 a nonmetal) Conductive only when dissolved in water or melted (broken up into ions) High melting points: always solid at STP Balancing Equations 		Relatively low	re as a solid or liquid melting points e Calculations
Name of metel/cation Cation charge Name of nonmetal/anion LiBr = lithium bromide	The smallest, whole-number coefficients need to be used to make sure there are the same number of atoms of each element on both sides of the equation. $Fe(OH)_2 + 2Ag(NO_3) \rightarrow Fe(NO_3)_2 + 2Ag(OH)$			ula (molar) mass to convert n grams and moles.
*charge of Li always known; no Roman numeral needed			$\frac{\# of moles}{1} = \frac{1}{2}$	given mass gram – formula mass
Li ₂ (CO ₃) = lithium carbonate *charge of Li always known * Anion name comes straight from Table E Cu ₂ O ₃ = copper (III) ox <u>ide</u> *charge of Cu NOT always known; needs Roman numeral	Fe: 1 Ag: X 2 (OH): 2	Fe: 1 Ag: 1 2 (OH): 1 2	given or want to p	s of a compound you are roduce <u>plar) mass</u> = add up mass of
$CU_2 O_3$ +(3)-2 Charge of cation (Cu) here +(3)-2 must be +3. +(3)-2	(N03): X 2	(No3): 2	Ca3 (PO4)2 =	= 310. g/mol (31.0) + 8(16.0)

UNIT 4: PARTICLE MOTION SUMMARY

Chemistry Unit 4 Fact/Concept/Skill List (Particle Behavior of Matter - Phases)

- 1. Old phase change terms to know (plus new variations): melting (*fusion*) freezing (*solidification*), boiling (*vaporization*), condensing, sublimating, deposition
- 2. Solids: particles fixed, vibrating, geometric structure, low nrg, strong IMFs, lower avg KE
- 3. Liquids: particles sliding around, medium nrg, medium IMFs, medium avg KE
- 4. Gases: fast, bouncing & rotating, high nrg, weak/no IMFs, highest avg KE
- 5. Gases take shape of and fill container, liquids just take shape but don't fill. Solids do neither.
- 6. endothermic = heat is added, heat goes in (melting & boiling & sublimating!)
- 7. exothermic = heat is removed, heat exits, heat goes out (freezing & condensing & deposition!)
- 8. Temperature = average kinetic energy of the particles (also know heat flows from hot to cold)
- 9. Kelvin temp scale: know conversion to Celcius (formula in Ref Table)
- 10. Table S skill: given a temperature of an element, determine if it is S or L or G
- 11. Substances with **higher MP or BP have stronger IMFs** (*particles hold tightly, so you must add more heat energy to get particles to move apart & change phase from S to L or L to G*)
- 12. Substances with lower MP or BP have weaker IMFs
- 13. Pressure: measured in atm or kPa (# of collisions in a gas), converting atm to kPa
- 14. **Kinetic Molecular Theory:** behaviors of the 3 phases are due to differences in the particle motion (*be able to compare the motion, spacing, energy, etc. of particles in all 3 phases*)
- 15. **PTV** (as P ${\star}$ the V ${\star}$, as T ${\star}$ the V ${\star}$, as P ${\star}$ the V ${\star}$)
- 16. Know the graphs for P T V
- 17. **atmospheric pressure** = air pressure (know STP from Table A)
- 18. combined gas law is over there \rightarrow (make a shopping list!)
- 19. **ideal gases:** fast & straight motion, no IMFs, particles are tiny (compared to the space), can only transfer nrg (in collisions) can't lose or change nrg type
- 20. **real gases:** slower, have some particle attractions, take up more space (compared to vol of container), can lose nrg (or change KE to heat, etc.)
- 21. real gases will **behave like ideal** at: *HIGH* temperature & *LOW* pressure (reduces interactions)
- 22. **vapor pressure** = pressure above a liquid due to evap (boiling & evap are both *vaporization*)
- 23. **boiling =** when VP is equal to atmospheric pressure
- 24. Table H skill: read VP diagram in Table H, normal BP, high VP vs. low VP
- 25. **Heating Curves:** find MP, FP, BP, where sol, liq, gas exist, plus where s + I, I + g exist, plus find where KE is steady but PE increasing, where KE increasing but PE constant, exo/endo
- 26. Heat of Fusion & Heat of Vaporization (Table B) (FP same as MP) know that vaporizing takes more nrg than melting (fusion) b/c it's easier to weaken IMFs than to totally overcome them
- 27. strong IMFs lead to ... high MP, high BP, low VP
- 28. weak IMFs lead to... low MP, low BP, high VP
- 29. Given 2 containers of gas: If P T V are the same then # particles (moles) = same (or if # particles & V and T are same, P must be the same, etc) *If 3 are the same, the 4th must be.*

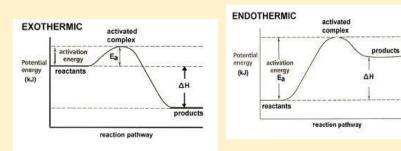
$$\frac{\mathbf{P}_1\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{P}_2\mathbf{V}_2}{\mathbf{T}_2}$$

UNIT 5: REACTION DYNAMICS SUMMARY

Conservation of Mass	Conservation of Energy	Conservation of Charge
Atoms (and their mass) cannot be created or destroyed over the course of a change.	To conserve overall energy, changes release heat (exothermic) or absorb heat (endothermic). Changes prefer to decrease potential energy and increase entropy.	Net charge remains the same throughout a reaction. In a redox reaction, this is true because <u>the number of</u> <u>electrons lost is equal to the number of electrons gained</u> .
 <u>Balanced equations</u> have an equal number of each element on their reactants and products sides. The total mass of the reactants will be equal to the total mass of the products. 	 Endothermic changes require heat to be put in: reactants + heat → products ΔH will be positive for these reactions Exothermic changes release heat as a product: 	Redox reactionsare changes in which onespecies is oxidized and another is reduced.OIL RIG Oxidation is loss (of e ⁻)Reduction is gain (of e ⁻)
Many reactions can be generalized by how the atoms move and rearrange themselves:	 reactants → products + heat ∆H will be <u>negative</u> for these reactions 	LEO says GER Loss of e ⁻ is oxidation Gain of e ⁻ is reduction
 Synthesis: A + B → C Decomposition: C → B + A Single Replacement: A + BC → B + AC 		 ALL single replacement reactions are redox reactions.
• Double Replacement : $AB + CD \rightarrow AD + CB$	Entropy measures chemical disorder!	 Double replacement reactions are NEVER redox reactions.
Math: Mole Ratios	Math: PE Diagrams (Graphs)	Math: Changes in Oxidation States
<u>Coefficients</u> in balanced equations represent the number of <u>moles</u> of an element/compound present.	Potential energy (PE) diagrams show changes in PE over the course of a reaction.	The "transfer" of electrons results in changes in oxidation state (charge) of an element.
Mole ratios are <i>ratios of coefficients</i> in a balanced chemical equation. They can be used to predict the effects of changes to a chemical system. $2H_2 + O_2 \rightarrow 2H_2O$ How many moles of oxygen would be used if a car uses	ENERGY broken endothermic reactants EXOTHERMIC course of reaction	 Assigning oxidation states allows you to see which, if any, elements get <u>Oxidized</u> (charge UP) or <u>Reduced</u> (charge DOWN) Pure elements ALWAYS have oxidation states of 0!
11.4 moles of hydrogen ? $\frac{2 \mod H_2}{1 \mod O_2} = \frac{11.4 \mod H_2}{x \mod O_2}$ Known mole ratio between compounds mentioned in Change mentioned in problem and unknown quantity (x)	EXOTHERMIC reaction pathway execution pathway e	Example: Balanced rxn: $2CO + O_2 \rightarrow 2CO_2$ Oxidation states: $2CO^2 + O_2 \rightarrow 2CO_2$ Charge of C ²⁺ goes up to C ⁴⁺ : C ²⁺ is oxidized

Chemistry Unit 5 Fact/Concept/Skill List (Changes in Rxns)

- Be able to identify chemical vs. physical <u>changes</u> and identify chemical vs. physical <u>properties</u>. (***commonly missed = a substance dissolving in water is a PHYSICAL change)
- For a reaction to occur you need lots of <u>effective collisions</u> (correct angle, fast speed, lots of force), to break bonds and allow new bonds to form. (***KEY: ↑ = increase)
- 3. A faster reaction rate means a reaction occurs in a smaller amount of time.
- 4. To <u>increase rxn rate</u> you need <u>more frequent</u> & <u>more energetic</u> (effective) collisions: (1) ↑ <u>concentration</u> or number of particles (2) ↑ <u>temp.</u> which increases KE/speed of particles (3) ↑ <u>surface area</u> by crushing which increases # particles exposed (4) add a <u>catalyst</u> to <u>lower</u> the activation energy
- 5. **Oxidation state** = "charge" of species.
- 6. **Species** = an atom, ion or molecule that is undergoing change in a chemical rxn
- 7. <u>Rules for assigning oxidation #s:</u> free elements = 0; group 1 = +1; group 2 = +2; O almost always -2; group 17 almost always -1; neutral compounds add to 0, polyatomics add to their charge; may need an equation to calculate elements with various possible charges
- 8. <u>**REDOX**</u> means reduction-oxidation reactions, which have a CHANGE in oxidation state; one species will increase and one will decrease. **# of e- lost = # of e- gained** (in any REDOX rxn)
- 9. <u>Reduction</u> means a <u>decrease in charge</u> (by gaining negative electrons) G.E.R.
- 10. **Oxidation** means an increase in charge (by losing negative electrons) L.E.O.
- 11. To state what's oxidized or reduced, MUST give the species & the CHARGE (like Ca⁰ or Cl⁻)
- 12. <u>How to know "Is it a REDOX rxn?":</u> (1) assign all charges, (2) if species change charge from reactant side to product side, it's REDOX! (*Tip: look for free elements!*)
- 13. <u>exothermic</u> rxns: feel hot, give off heat, heat/nrg is product, -ΔH in Table I (hi to low PE diagram)
- 14. <u>endothermic</u> rxns: feel cold, take in heat, heat/nrg is reactant, $+\Delta H$ in Table I (low to hi PE diagram)
- 15. <u>PE diagrams</u> (*both endo* and *exo*): be able to locate PEP and PER, activation nrg, Heat of Reaction (Δ H), PE of activated complex (know Δ H = PEP - PER and know the <u>SHAPE</u> of endo/exo)
- 16. Activation Energy = from start (PEP) up to top of hill (top of hill = "activated complex")
- 17. low energy = more stable (exo rxns produce more stable products b/c heat nrg was given off)
- 18. Entropy = <u>disorder</u>; systems move toward higher entropy; *lower* sol \rightarrow liq \rightarrow aq \rightarrow gas *higher*
- 19. OVERALL: systems tend to move towards low energy and high entropy (think teen bedroom)
- 20. Conservation of... **CHARGE and MASS and ENERGY** (can't be destroyed or made from nothing, just moved around in all reactions they are "conserved", meaning total before = total after)
- 21. EASY Conservation of Mass problems: total grams of reactants = total grams of products
- 22. HARDER Conservation of Mass problems: coefficients give mole ratios for calculating moles


23. 5 Reaction Types

<u>Synthesis</u> : $A + B \rightarrow C$ (creating one new)	Single Replacement: $A + BC \rightarrow B + AC$ (one swap, homewrecker)
Decomposition : $C \rightarrow B + A$ (breaking one apart)	Double Replacement: AB + CD → AD + CB (two swaps, wife swap) *** these are NEVER redox***

*<u>Combustion</u>: CxHy + $O_2 \rightarrow CO_2 + H_2O$ (a type of decomp., always produces water & carbon dioxide, has oxy & CxHy as reactants)

24. Old Stuff to Know:

- balancing rxns
- calculate gram-formula mass
- names of phase changes (sublimating? boiling? condensing? melting? freezing?, etc.)

UNIT 6 SUMMARY: SOLUTIONS

Electrolytes

Electrolytes can <u>conduct electricity</u> when <u>in their aqueous</u> <u>form</u> by releasing <u>mobile ions</u>.

<u>Acids</u> release the H^+ (a.k.a. H_3O^+) ion in water

• Common acids are listed on Table K

Bases release the OH ion in water

• Common bases are listed on Table L

<u>Salts</u> (soluble ionic compounds) release ions into a solution

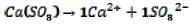
- Use **Table F** to see if it's soluble!
- More ions = better electrolyte!

Solids = no *mobile* ions = <u>no conductivity</u>

Electrolyte <u>solutions</u> (aq) are <u>homogeneous</u> <u>mixtures</u>, requiring *distillation* or *evaporation* to be separated (NO FILTERING [☉])

Math: IDing and Counting lons

Electrolytes dissociate when in water, generating a particular number of <u>cations</u> and <u>anions</u>.

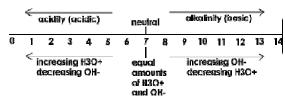

Cations (+ charged) might be a...

- Metal from the Periodic Table
- Positive ion from Table E

Anions (- charged) might be a...

- Nonmetal from the Periodic Table
- Negative ion from Table E

Example:


Producing a total of 1 + 1 = 2 ions

Acids	and	Bases

Acids release the H^*/H_3O^* ion in solution while bases release the OH^- ion in solution. Their relative strength is indicated using the <u>pH scale</u>.

Indicators give us info about relative pH

- **Table M** describes the color of different indicators as pH changes from 1 to 14.
- <u>Acids</u> have pH values below 7
- <u>Bases</u> have pH values above 7
- <u>Neutral</u> solutions have a pH of 7.

One "jump" on the pH scale means a 10x change in H⁺ concentration (10x if going down, 1/10 if going up in pH)

Math: Concentration (M)

Molarity (M) is a ratio that describes the "strength" of a solution: how much of a <u>solute</u> is dissolved into a particular amount of <u>solution</u>.

 $Molarity (M) = \frac{moles \ of \ solute}{Liter \ of \ solution}$

- Moles may need to be converted from $mol = \frac{g}{gfm}$
 - Milliliters (mL) may need to be converted into liters (L) using the ratio

1 L = 1000 mL

Neutralization/D.R. Reactions

Acids and bases react with one another in a type of <u>double-replacement reaction</u> to make H_2O and a salt.

____(H)Acid + ___ Base(OH) \rightarrow ___ H₂O + ___ Salt

Neutralized solutions have *equal* concentrations of H^+ and OH^- ions.

Like all double replacement reactions, the neutralization equation must show...

- <u>Conservation of charge</u> by making sure all compounds are neutral (*charges/ oxidation numbers* cancel)
- <u>Conservation of mass</u> by making sure *coefficients* balance the equation

Double replacement reactions between conductive salts might create a **precipitate**: an insoluble solid (check **Table F**)

Math: Titrations

<u>Titrations</u> allow us to calculate the <u>concentration</u> of an acid or base using the concept of <u>neutralization</u>.

$M_A V_A = M_B V_B$

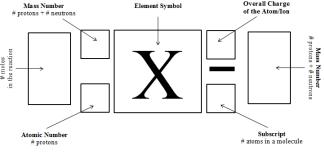
- M represents the **molarity** of the acid (A) or base (B)
- V represents the **volume** of the acid (A) or base (B) in *either* mL or L

The titration equation takes into account that some acids/bases are stronger than others and are "better" at neutralizing their "opposites."

UNIT 7: ATOMS AND THE PERIODIC TABLE, LEVEL 2

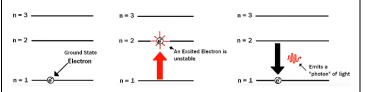
Models of the Atom Many scientists contributed over a long period of time An atom's structure and properties come from its number and to our modern understanding of atomic structure location of protons, neutrons, and electrons. Dalton Discovery: Indivisible atoms Knowing about an atom's subatomic particles allows Thomson Discovery: Electron you to calculate other information: Experiment: "Cathode rays" were Mass number = protons + neutrons deflected by electric and magnetic fields **Atomic number** = protons • Model: "plum pudding" Net charge = protons – electrons • Rutherford Discovery: Nucleus, proton, empty Nuclear charge = protons space! Experiment: Alpha particles shot at a **Overall Charge** layer of gold foil mostly passed Element Symbol Mass Number # protons + # neutrons of the Atom/Ion through, but some were deflected by Mass # protons a nucleus Discovery: Fixed orbits (energy Coefficient # moles the reaction Bohr s Number s + # neutr levels) for electrons Schrödinger Discovery: orbitals (regions of probable location of electrons) Model: wave-mechanical, quantum,

Average Atomic Mass


electron cloud

An element's average atomic mass is a weighted average of all of its naturally occurring isotopes.

$$AAM = (mass)\left(\frac{\%}{100}\right) + (mass)\left(\frac{\%}{100}\right) + \cdots$$


- Isotopes have the same number of protons and electrons, but different numbers of neutrons
- The average atomic mass will be • closest in number to the most abundant isotope of that element

Subatomic Particles and Atoms

Excited Electrons and Spectra

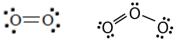
We can use Bohr's model of the atom to explain the unique color spectra released by each element.

- An atom's ground state is the lowest-energy electron configuration (shown on the P.T.)
- An excited state adds energy to ONE • electron and promotes it to a higher energy level (unstable)

Periodic Trends

When atoms are arranged on the Periodic Table in order of increasing atomic number, repeating patterns appear within groups and across periods.

Atomic radius (Table S): measure in *m* or *pm* Electronegativity (Table S): how strongly an atom of an element attracts electrons in a chemical bond


Trends related to electronegativity and atomic radius:

First ionization energy: energy required to remove one electron from the valence shell Metallic character: "willingness" to lose an electron

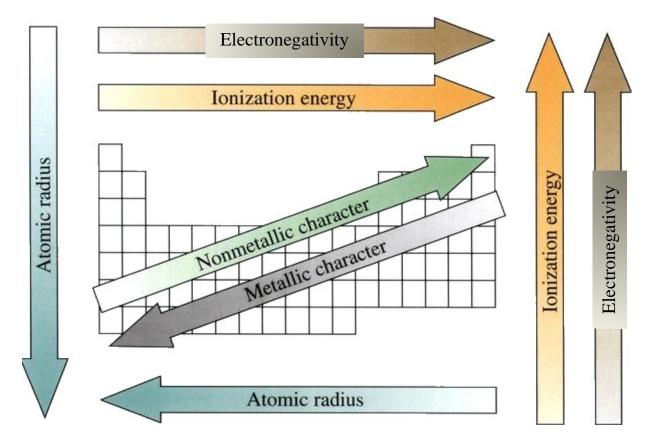
Chemical reactivity: Atoms with the same number of valence electrons react in chemically similar ways

Allotropes

Elements can exist in multiple forms in the same phase; each "form" is an allotrope with different properties as a result of a different molecular structure.

- O_2 and O_3 (ozone) have different • molecular structures, giving them different chemical and physical properties
- Solid carbon can take the form of ٠ coal, graphite, diamond, or large fullerenes depending on the connectivity of its covalent bonds

PERIODIC TABLE TRENDS SUMMARY


IMPORTANT TERMS TO DESCRIBE WHY THESE TRENDS EXIST:

Moving across a period:

- Nuclear charge: number of protons in the nucleus (increases from left to right)
 - Positive charge attracts negatively charged electrons

Moving down a group:

- Electron shells: energy levels where electrons hang out
 - Adding electron shells (moving down a group) makes an atom bigger and moves valence electrons farther away from the positively charged nucleus

- Positive ions (cations) are always smaller than their neutral atoms.
 Electrons are taken away
- Negative ions (anions) are always bigger than their neutral atoms.
 - o Electrons are added

UNIT 8: BONDING AND HYDROCARBONS, LEVEL 2

Types of Bonds

Bonds can be classified as <u>ionic</u>, <u>polar covalent</u>, <u>nonpolar</u> <u>covalent</u>, or <u>metallic</u> based on the types of elements involved in the bond.

Ionic BONDS: M-NM

- High difference in <u>electronegativity</u> (EN)
- MOST POLAR type of bond
- <u>Cation</u> and <u>anion</u> formed

Covalent BONDS: NM-NM

- Polar covalent: ∆EN > 0
 - Electrons move towards the element with the higher EN
- **Nonpolar covalent**: $\Delta EN = 0$
 - o Electrons are shared equally

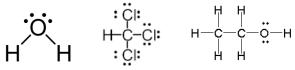
Metallic "BONDS": M only

- "Sea" of mobile electrons
- Makes metals conductive and malleable

Intermolecular Forces of Attraction

A molecule's polarity and size determines the strength of the IMFs that act between molecules.

NONPOLAR POLAR COVALENT IONIC


- <u>Hydrogen bonds</u> are a super-strong IMF that act between <u>polar covalent</u> molecules that contain **H** and **N**, **O**, **or F**
- Nonpolar hydrocarbons have weak IMFs affected by mass/size
 - More carbons = higher BP
 - Less branching = higher BP
 - Distillation can separate!

Types of Molecules

Within a molecule, electrons can be distributed <u>symmetrically</u> or <u>asymmetrically</u> in chemical bonds.

Polar MOLECULES: asymmetrical (electrons favor one side of the molecule over the other)

• 0 or 1 line of symmetry in molecule

Nonpolar MOLECULES: symmetrical (electrons are distributed evenly throughout the molecule)

- 0 or 1 line of symmetry
- Bonds within the molecule could be polar or nonpolar

Percent Composition by Mass

We can use molar masses to determine the % by mass of one element within a compound.

% composition =
$$\left(\frac{mass of part}{mass of whole}\right) * 100$$

For a compound...

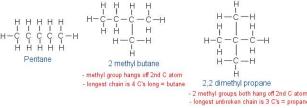
- Mass of part = total mass of element
- Mass of whole = gram-formula mass

Example: % iron in iron (III) oxide Formula = Fe₂O₃

%
$$Fe = \left(\frac{2*55.8}{(2*55.8) + (3*16)}\right) * 100 = 69.9\%$$

Naming Hydrocarbons

Tables P and Q provide prefixes and suffixes for naming saturated and unsaturated hydrocarbons.


<u>Saturated hydrocarbons</u> contain only single bonds

• Alkanes: C_nH_{2n+2}

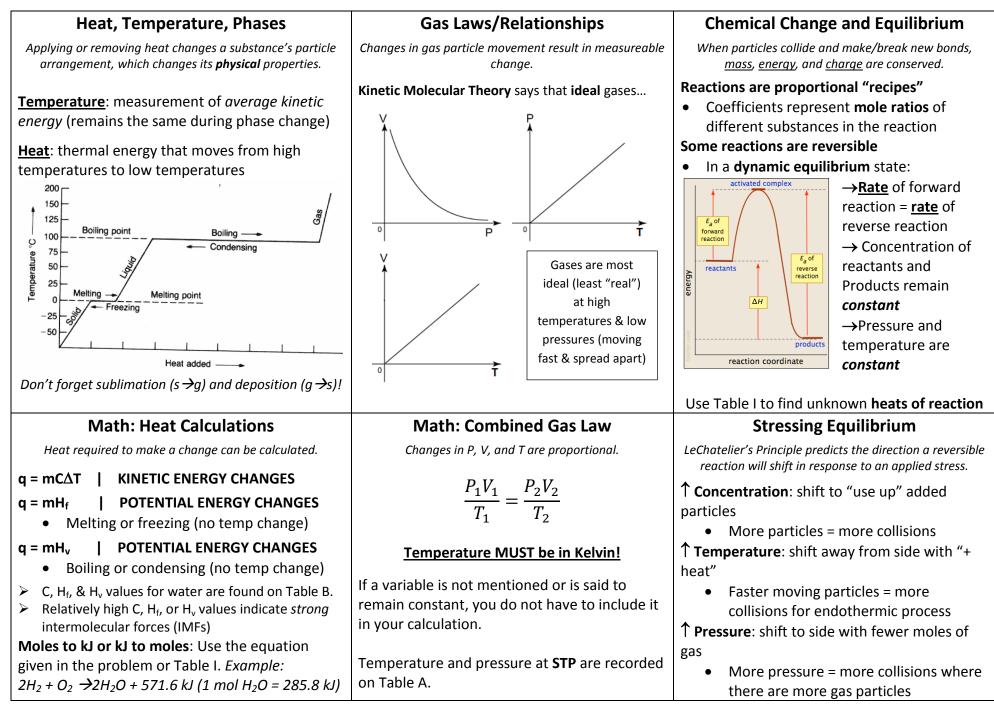
<u>Unsaturated hydrocarbons</u> contain at least one double or triple bond

- Alkenes: C_nH_{2n} (one double bond)
- Alkynes: C_nH_{2n+2} (one triple bond)

<u>Isomers</u> of a molecule have the same molecular formula, but a different structural formula (and a different IUPAC name)

Empirical Formulas

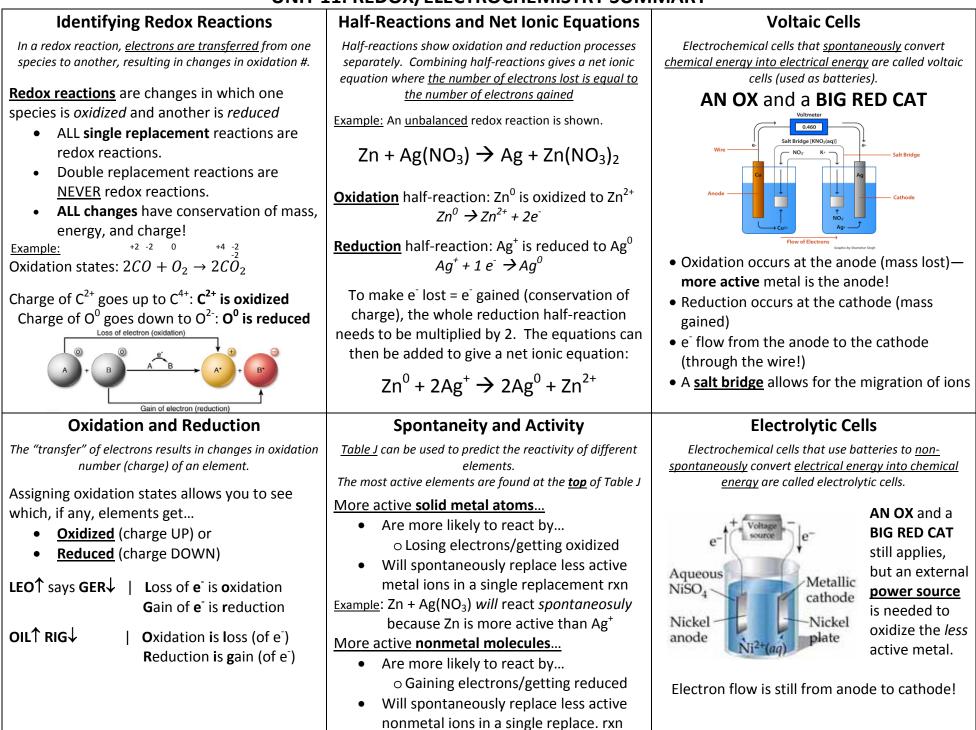
Empirical formulas represent the lowest ratio of element in a compound.


<u>Molecular \rightarrow Empirical</u>: reduce subscripts by GCF

<u>Ex</u>: C_5H_{10} has empirical formula CH_2 (GCF = 5)

<u>Empirical \rightarrow Molecular</u>: use molar mass to find

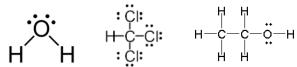
- a factor to multiply empirical subscripts by <u>Ex</u>: Molecule with gfm of 82 g/mol and empirical formula C₃H₅
 - C₃H₅ has mass of 41 g/mol
 - 82 / 41 = 2 (GCF of molecular formula)
 - Multiply subscripts by 2: $C_3H_5 \rightarrow C_6H_{10}$


UNIT 9: PHYSICAL AND CHEMICAL CHANGE SUMMARY

UNIT 10: SOLUTIONS SUMMARY

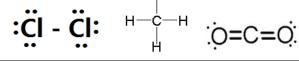
Electrolytes	Acids and Bases	Polarity: Like Dissolves Like	
Electrolytes can <u>conduct electricity</u> when <u>in their</u> <u>aqueous form</u> by releasing <u>mobile ions</u> .	Arrhenius acids release the H ⁺ /H₃O ⁺ ion in solution while Arrhenius bases release the OH ⁻ ion in solution. Their relative strength is indicated using the <u>pH scale</u> .	Polar <u>solvents</u> are best able to dissolve polar <u>solutes</u> . <u>Polar MOLECULES</u> : asymmetrical (uneven	
 <u>Acids</u> release/<u>DONATE</u> the H⁺ (a.k.a. H₃O⁺) ion Common acids are listed on Table K <u>Bases</u> release the OH⁻ ion in water (alternatively, ACCEPT the H⁺ ion) Common bases are listed on Table L <u>Conductive salts</u> release soluble ions into a solution (+ and – "parts") Solubility of an ionic compound can be determined using Table F Solids (insoluble) = no mobile ions = no conductivity (CAN be filtered) Electrolyte solutions are homogeneous 	 Indicators give us information about the relative pH of a solution Table M describes the color of different indicators as pH changes from 1 to 14. Acids have pH values below 7 (more H⁺) Bases have pH values above 7 (less H⁺) Neutral solutions have a pH of 7. (H⁺=OH⁻) 	distribution of electrons) • 0 or 1 line of symmetry in molecule • Stronger IMFs • Higher boiling points H H • Lower vapor pressure Monpolar MOLECULES: symmetrical (electrons are distributed evenly throughout the molecule) • 2 or more lines of symmetry • Weaker IMFs : : : : : : : : : : : : : : : : : : :	
mixturesrequiring distillation or evaporationto be separated (NO FILTERING ☺)	More H^+ = More acidic	<u>Strongest IMFs</u> = hydrogen bonding, where polar molecules have H bonded to F, O, or N	
Math: Concentration (M, ppm, %)	Math: Titrations	Solubility	
Concentration describes the "strength" of a solution: how much of a <u>solute</u> is dissolved into a particular amount of <u>solution</u> . Molarity $(M) = \frac{moles \ of \ solute}{Liter \ of \ solution}$ • Moles may need to be converted from grams using $mol = \frac{g}{gfm}$ • 1000 Milliliters (mL) = 1 Liter (L) $ppm = \frac{g \ solute}{dtot} * 1,000,000$	Titrations allow us to calculate the concentration of an acid or base using the concept of neutralization.Because acids neutralize bases: $(H^+)Acid + Base(OH^-) \rightarrow H_2O + SaltWe can use known concentrations of an acid orbase to figure out an unknown concentration ofits "opposite"M_AV_A = M_BV_B• M represents the molarity of the acid (A)$	 <u>Table G</u> shows how much of a particular <u>solute</u> can dissolve in a specific (100 g) <u>amount of water</u> at a particular <u>temperature</u>. (Solids increase, gases decrease.) Dissolving particles (many ions or 1 full covalent molecule) in water <u>increases the boiling pt</u> and <u>decreases the freezing pt</u>. More particles/higher M = bigger effect on bp/fp. <u>Unsaturated</u> solutions: more solute can be dissolved (below Table G line) 	
$ppm = \frac{g \text{ solute}}{g \text{ solution}} * 1,000,000$ % by mass = $\frac{g \text{ solute}}{g \text{ solution}} * 100$	 or base (B) V represents the volume of the acid (A) or base (B) in <i>either</i> mL or L 	Saturated solutions: the ideal amount of solute is dissolved (on Table G line) Supersaturated solutions: "too much" solute has been dissolved (above Table G line)	

UNIT 11: REDOX/ELECTROCHEMISTRY SUMMARY

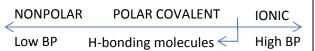

UNIT 12: ORGANIC CHEMISTRY, LEVEL 2

Types of Molecules

Within a molecule, electrons can be distributed <u>symmetrically</u> or <u>asymmetrically</u> in chemical bonds.


Polar MOLECULES: asymmetrical (electrons favor one side of the molecule over the other)

• 0 or 1 line of symmetry in molecule


Nonpolar MOLECULES: symmetrical (electrons are distributed evenly throughout the molecule)

- 2 or more lines of symmetry
- Bonds within the molecule could be polar or nonpolar

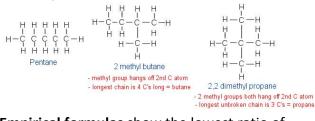
Intermolecular Forces of Attraction

A molecule's polarity and size determines the strength of the IMFs that act between molecules.

- <u>Hydrogen bonds</u> are strong IMFs that act between <u>polar covalent</u> molecules that contain H bonded to N, O, or F
- Nonpolar hydrocarbons have weak IMFs affected by mass/size
 - More carbons = higher BP
 - Less branching = higher BP

Naming Hydrocarbons

Tables P and Q provide prefixes and suffixes for naming saturated and unsaturated hydrocarbons.


<u>Saturated hydrocarbons</u> contain only single bonds

• Alkanes: C_nH_{2n+2}

<u>Unsaturated hydrocarbons</u> contain at least one double or triple bond

- Alkenes: C_nH_{2n} (one double bond)
- **Alkynes**: C_nH_{2n-2} (one triple bond)

<u>Isomers</u> of a molecule have the same **molecular** formula, but a different structural formula

<u>Empirical formulas</u> show the lowest ratio of elements in a compound

Functional Groups

Distinct groups of atoms can be attached to organic molecules to give them similar chemical properties.

Any-carbon functional groups:

- Halides (-X where X is from Group 17)
- Alcohols (-OH)
- Ketones (-COC-)
- Amines (-NH₂)

Last-carbon functional groups:

- Aldehydes (-CHO)
- Organic acids (-COOH)
- Amides (-CONH₂)

Interrupting the carbon-chain functional groups:

- Ethers (-O-)
- Esters (-COO-)

All classes, functional groups, and sample names/structures are on <u>Table R</u>!

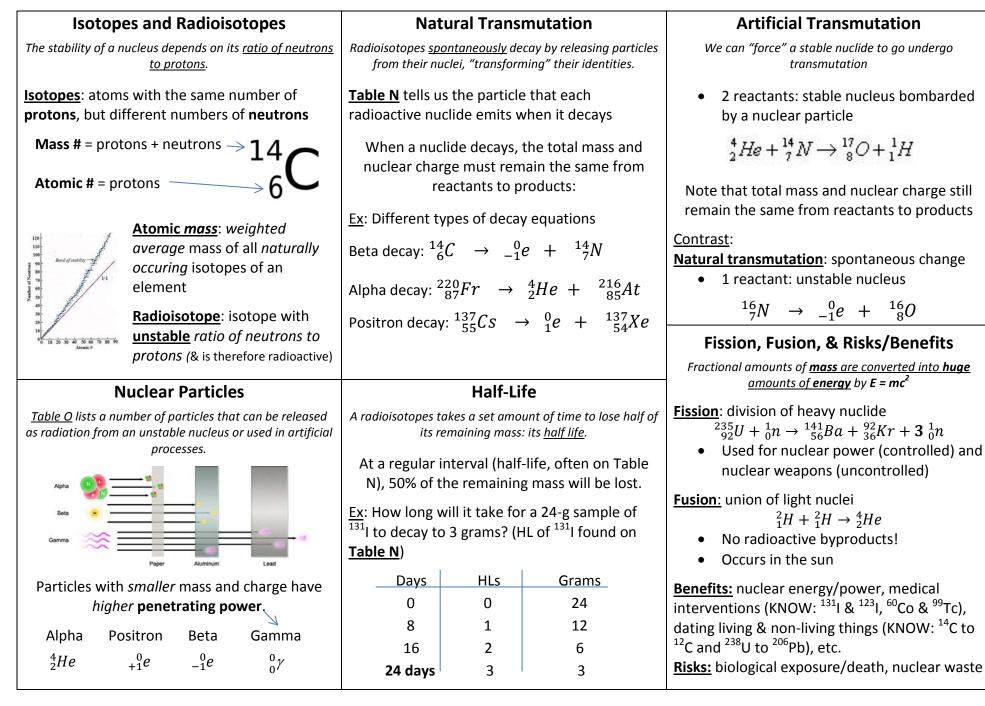
Organic Reaction Types

Organic molecules react in predictable ways.

<u>Substitution</u>: Switch out a hydrogen for a halogen

<u>Addition</u>: Make a single bond out of a multiple bond by adding on a diatomic molecule

$$\begin{array}{ccccc} H & H & H & H \\ | & | & | & | \\ H-C=C-H & H_2 \rightarrow H-C-C-H \\ | & | \\ H & H \end{array}$$


<u>Polymerization</u>: Make big molecules (polymers) <u>F</u> out of the same small unit (monomer)

<u>Combustion</u>: Burn an organic molecule using O_2 to make CO_2 and H_2O

$$2 C_4 H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2 O_2$$

Esterification: Make an ester and H₂O by smashing together an alcohol and an organic acid

UNIT 13: NUCLEAR SUMMARY

