Unit Linear Functions

Day 2 The Slope of a Line (from a graph)

I can ...

- . . . find the slope of a line on a graph.
- ... find the slope of a line given two points.

SLOPE: The slope of a line is the ratio of the vertical change to the horizontal change.

slope =
$$\frac{\text{vertical change}}{\text{horizontal change}} \stackrel{\longleftarrow}{\longleftarrow} \text{run}$$
= $\frac{3}{2}$

The slope of the line is $\frac{3}{2}$.

You can find the slope of the line by ...

- ... determining the change in y and the change in x from one point to the next on the graph.
- ... making a "little-bitty" table with two coordinate points and finding the rate of change.

$$\frac{\Delta y}{\Delta x} = \frac{\text{Move down 3 in the y direction}}{\text{Move to the right 6 in the x direction}} = \frac{-3}{6} = -\frac{1}{2}$$

$$+6 \quad \begin{array}{c|c} x & y \\ \hline -4 & 3 \\ \hline 2 & 0 \end{array}$$

$$\frac{\Delta y}{\Delta x} = \frac{-3}{6} = -\frac{1}{2}$$

Finding the slope of the line on a graph

Identify the slope of the line using the graph or a "itty-bitty" table.

I THINK I GOT IT!

1. What is the slope of the line?

2. What is the slope of the line?

I GOT IT!

What is the slope of the line?

Answers:1)
$$\frac{\Delta y}{\Delta x} = \frac{2}{1}$$
 2) $\frac{\Delta y}{\Delta x} = \frac{-5}{4}$ 3) $\frac{\Delta y}{\Delta x} = \frac{2}{0}$ Can't divide by zero, so we say the slope is UNDEFINED.

Unit Linear Functions

Day 2 The Slope of a Line (from a graph)

I can ...

. . . find the slope of a line on a graph.

... find the slope of a line given two points.

SLOPE: The slope of a line is the ratio of the vertical change to the horizontal change.

slope =
$$\frac{\text{vertical change}}{\text{horizontal change}} \stackrel{\longleftarrow}{\longleftarrow} \text{rise}$$

= $\frac{3}{2}$

The slope of the line is $\frac{3}{2}$.

You can find the slope of the line by ...

...determining the change in y and the change in x from one point to the next on the graph. OR

... making a "little-bitty" table with two coordinate points and finding the rate of change.

$$\frac{\Delta y}{\Delta x} = \frac{\text{Move down 3 in the y direction}}{\text{Move to the right 6 in the x direction}} = \frac{-3}{6} = -\frac{1}{2}$$

$$+6 \quad \begin{array}{c|c} x & y \\ \hline -4 & 3 \\ \hline 2 & 0 \end{array} \right) -3$$

$$\frac{\Delta y}{\Delta x} = \frac{-3}{6} = -\frac{1}{2}$$

Finding the slope of the line on a graph

Identify the slope of the line using the graph or a "itty-bitty" table.

$$\frac{\text{rise}}{\text{run}} \to \frac{\Delta Y}{\Delta x} = \frac{3}{5}$$

$$\frac{\text{rise}}{\text{run}} \rightarrow \frac{\Delta Y}{\Delta x} = \frac{-4}{2} = -Z$$

$$\frac{\text{rise}}{\text{run}} \rightarrow \frac{\Delta y}{\Delta x} = \frac{0}{1} = 0$$

I THINK I GOT IT!

1. What is the slope of the line?

$$\frac{\text{rise}}{\text{run}} \frac{\Delta y}{\Delta x} = \frac{2}{1} = 2$$

2. What is the slope of the line?

$$\frac{\Delta Y}{\Delta x} = \frac{-S}{4} = -\frac{S}{4}$$

I GOT IT!

What is the slope of the line?

$$\frac{\Delta Y}{\Delta x} = \frac{2}{\Delta x}$$

$$\frac{\text{risc}}{\text{run}} \frac{\Delta y}{\Delta x} = \frac{2}{D} \neq \text{undefined}$$

Answers:1)
$$\frac{\Delta y}{\Delta x} = \frac{2}{1}$$

$$2) \quad \frac{\Delta y}{\Delta x} = \frac{-5}{4}$$

3)
$$\frac{\Delta y}{\Delta x} = \frac{2}{0}$$