Circle Theorems for Proofs

Theorem	Picture
All radii in a circle are congruent.	$\overline{OA} \cong \overline{OB}$
All diameters in a circle are congruent.	$\overline{AB} \cong \overline{CD}$
If an inscribed angle intercepts a semicircle, then it is a right angle.	$\triangle ACB$ is a right angle
If lines are parallel in a circle, then the arcs they intercept are congruent.*	If $\overline{AB} \parallel \overline{CD}$ Then $\widehat{AC} \cong \widehat{BD}$
If chords intercept congruent arcs, then chords are congruent. *	If $\widehat{AB} \cong \widehat{CD}$ Then $\overline{AB} \cong \overline{CD}$
If inscribed angles are congruent, then the arcs they intercept are congruent. *	If $\angle ABC \cong \angle DEF$ Then $\widehat{AC} \cong \widehat{DF}$
If inscribed angles intercept the same arc, then the angles are congruent.	$\angle ABC \cong \angle ADC$

^{* =} converse is also true.

Theorem	Picture
If a radius (or diameter) is perpendicular to a chord, then the radius (or diameter) bisects the chord and the intercepted arc.*	B If $\overline{OC} \perp \overline{AB}$ then $\overline{AE} \cong \overline{EB}$ and $\widehat{AC} \cong \widehat{CB}$
If chords are congruent, then they are equidistant from the center.*	If $\overline{AB} \cong \overline{DC}$ then $\overline{OF} \cong \overline{OE}$
If a radius is drawn to a tangent, then the radius and tangent are perpendicular.	A If \overline{AB} is a tangent then $\overline{OB} \perp \overline{AB}$
If tangent segments are drawn to a circle from an external point, then the tangents are congruent.	If \overline{AB} and \overline{CB} are tangents then $\overline{AB} \cong \overline{CB}$
If two tangents are drawn to a circle from an external point and a line connects the point to the center of the circle, then that line bisects the angle formed by the two tangents.	$\angle ABO \cong \angle CBO$
If central angles are congruent then their chords are congruent.*	If $\angle AOB \cong \angle DOC$ Then $\overline{AB} \cong \overline{DC}$

^{* =} converse is also true.