- 17. A tree is located 30 feet east of a fence that runs north to south. Kelly tells her brother Billy that their dog buried Billy's hat a distance of 15 feet from the fence and also 20 feet from the tree. Draw a sketch to show where Billy should dig to find his hat. Based on your sketch, how many locations for the hat are possible?
- 18. Point P is x inches from line ℓ . If there are exactly three points that are 2 inches from line ℓ and also 6 inches from P, what is the value of x?
- 19. Point P is located on \overline{AB} . How many points are 3 units from \overline{AB} and 5 units from point P? Draw a diagram to support your answer.
- 20. Lines AB and CD are parallel to each other and 6 inches apart. Point P = 1 located between the two parallel lines and 1 inch from \overline{AB} . How many points are equidistant from \overline{AB} and \overline{CD} and, at the same time, 2 inches from point P? Draw a diagram to support your answer.
- 21. a. Describe completely the locus of points 2 units from the line whose equation is x = 3.
 - b. Describe completely the locus of points n units from the point P(3.2)
 - c. Determine the total number of points that satisfy the locus conditions in parts a and b simultaneously for n = 2?
- **22.** Point *M* is the midpoint of \overline{AB} .
 - a. Describe fully the locus of all points in a plane that are
 - (1) equidistant from A and B
 - (2) 6 units from \overrightarrow{AB}
 - (3) d units from M
 - b. For what value of d will there be exactly two points that simultaneously satisfy all three conditions in part a.
- 23. Point P is on \overline{AB} .
 - a. Describe fully the locus of points:
 - (1) d units from \overrightarrow{AB}
 - (2) D units from P.
 - b. Find the number of points that satisfy the two locus conditions when
 - (1) D = d
 - (2) D < d
 - (3) D > d

9.3 CONCURRENCY THEOREMS

KEY IDEAS

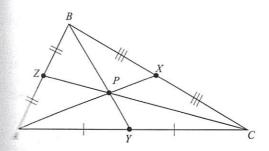
Concurrent lines are three or more lines that intersect in the same point. The mutual point of intersection is called the **point of concurrency**. In a triangle, the following sets of lines are concurrent:

- · The three medians
- · The three altitudes
- · The perpendicular bisectors of the three sides
- The three angle bisectors

Concurrency of Medians

The three medians of a triangle are concurrent in a point called the **centroid** of the triangle. The distance from each vertex to the centroid is two-thirds of the length of the entire median drawn from that vertex, as shown in Figure

$$= 1$$
. Thus, if $AX = 9$, then $AP = \frac{2}{3} \times 9 = 6$ and $PX = 3$.



Points *X*, *Y*, and *Z* are midpoints:

- $AP = \frac{2}{3}AX$
- $BP = \frac{2}{3}BY$
- $CP = \frac{2}{3}CZ$

Figure 9.1 Point P is the centroid of the triangle.

The centroid of a triangle is its *center of gravity*. A metal triangular plate can made to balance horizontally in space by placing a single support directly underneath the centroid of the triangle.

Concurrency of Perpendicular Bisectors

The perpendicular bisectors of the three sides of a triangle are concurrent in point equidistant from the vertices of the triangle. In Figure 9.2, the perpendicular bisectors of the sides of $\triangle ABC$ are concurrent in point O. Since $\triangle ABC$ is equidistant from the vertices of the triangle, OA = OB = OC.

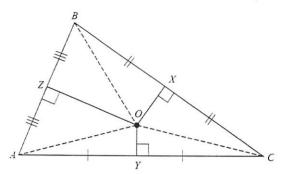


Figure 9.2 Point O is the circumcenter of $\triangle ABC$.

Using OA as a radius and point O as a center, a circle can be *circumscribed* about $\triangle ABC$ so that each of its vertices are points on the circle. Point O is called the **circumcenter** of the triangle.

Location of the Circumcenter of a Triangle

The circumcenter of a triangle can fall in the interior of the triangle, on a side of the triangle, or in the exterior of the triangle, as illustrated in Figure 9.3.

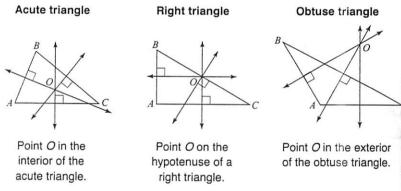
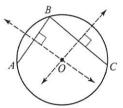


Figure 9.3 Locating the circumcenter O of a triangle.

MATH FACTS

The center of a circle can be located by finding the point of intersection of the perpendicular bisectors of any two non-parallel chords of the circle.



Concurrency of Angle Bisectors

The three angle bisectors of a triangle are concurrent in a point equidistant from the sides of the triangle. In Figure 9.4, the bisectors of the angles of $\triangle ABC$ are concurrent in point Q. Since point Q is equidistant from the sides of the triangle, QX = QY = QZ.

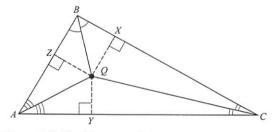


Figure 9.4 The bisectors of the angles are concurrent at a point Q equidistant from the sides of $\triangle ABC$.

Using QX as the radius and point Q as the center, a circle can be *inscribed* in $\triangle ABC$ so that points X, Y, and Z are on the circle, as shown in Figure 9.5. Fint Q is called the **incenter** of the triangle. Unlike the circumcenter of a rangle, the incenter of a triangle always lies in the interior of the triangle.

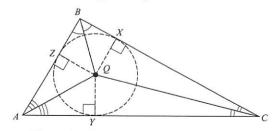


Figure 9.5 Point Q is the incenter of $\triangle ABC$.

Concurrency of Altitudes

The altitudes of a triangle, extended if necessary, are concurrent in a point called the **orthocenter** of the triangle. The orthocenter of a triangle can fall in the interior of the triangle, on a side of the triangle, or in the exterior of the triangle, as illustrated in Figure 9.6.

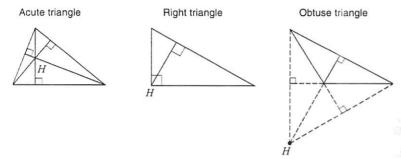


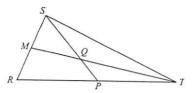
Figure 9.6 Point H is the orthocenter of each triangle.

- In an acute triangle, the orthocenter lies in the interior of the triangle.
- In a right triangle, either leg serves as the altitude drawn to the other leg. The point of concurrency of the three altitudes is the vertex of the right angle.
- In an obtuse triangle, the altitudes and a side need to be extended so that the orthocenter falls in the exterior of the triangle.

Math Facts		
Set of Lines in a Triangle	Point of Concurrency	Related Facts
Medians	Centroid	Centroid divides each median into segment lengths with the ratio 2:1 as measured from each vertex.
Perpendicular bisectors of sides	Circumcenter	Circumcenter is the center of the circumscribed circle. In a right triangle, it lies on the hypotenuse.
Angle bisectors	Incenter	Incenter is the center of the inscribed circle and always lies in the interior of the triangle.
Altitudes	Orthocenter	In a right triangle, the orthocenter is at the vertex of the right angle.

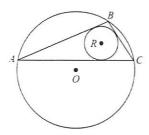
Check Your Understanding of Section 9.3

A. Multiple Choice.



- 1. In $\triangle RST$, medians \overline{TM} and \overline{SP} are concurrent at point Q. If TQ = 3x 1 and QM = x + 1, what is the length of median \overline{TM} ?

 (1) 3 (2) 8 (3) 12 (4) 11
- 2. If circle O is circumscribed about $\triangle ABC$, then point O always lies on
 - (1) side \overline{AC}
 - (2) the median to side \overline{AC}
 - (3) the bisector of $\angle ABC$
 - (4) the perpendicular bisector of \overline{AC}
- 3. In $\triangle ABC$, points J, K, and L are the midpoints of sides \overline{AB} , \overline{BC} , and \overline{AC} , respectively. If the three medians of the triangle intersect at point P and the length of \overline{LP} is 6, what is the length of median \overline{BL} ?
 - (1) 18
- (2) 12
- (3) 9
- $(4) \ 4$
- **4.** If circle O is inscribed in $\triangle ABC$, then point O is always on
 - (1) side \overline{AC}
 - (2) the median to side \overline{AC}
 - (3) the bisector of $\angle ABC$
 - (4) the perpendicular bisector of \overline{AB}
- 5. Given right triangle ABC with right angle at C. The locus of points equidistant from points A and B intersects \overline{AB} at the
 - (1) center of the inscribed circle
 - (2) center of the circumscribed circle
 - (3) orthocenter of the triangle
 - (4) centroid of the triangle



6. In the accompanying figure, O is the center of the circle circumscribed about scalene $\triangle ABC$ and R is the center of the circle inscribed in scalene $\triangle ABC$.

Which statement is false?

- (1) Point R is equidistant from \overline{AC} and \overline{BC} .
- (2) Point O is equidistant from points B and C.
- (3) Point R lies on the bisectors of angles A and C.
- (4) Point O is the point at which the altitudes drawn to sides \overline{AC} , \overline{AB} . and \overline{BC} intersect.
- B. Show or explain how you arrived at your answer.
- 7. Given right triangle ABC with right angle at C.
 - a. Describe the locus of points equidistant from sides \overline{AC} and \overline{AB} .
 - b. In how many points, if any, will the locus described in part a intersect the locus of points equidistant from sides \overline{AB} and \overline{BC} .
 - c. The locus described in parts a and b can be used to determine the
 - (1) center of the inscribed circle
 - (2) center of the circumscribed circle
 - (3) orthocenter of the triangle
 - (4) centroid of the triangle

WRITING AN EQUATION OF A LINE

The set of all ordered pairs (x, y) that satisfy a two-variable linear equation is represented by a line in the coordinate plane. To be able to write an equation of an oblique (slanted) line, you need to know two facts about the line:

- . The slope and the coordinates of a point on the line or
- The coordinates of two points on the line.

Slope-Intercept Equation: y = mx + b

When a two-variable linear equation is solved for y, it has the general form y = mx + b, where

- m, the coefficient of x, is the slope of the line
- b, the y-intercept, indicates where the line crosses the y-axis

To read the slope and y-intercept of a line from its equation, it may be necessary to rewrite it in y = mx + b form. If an equation of line ℓ is 2y - 6x = 10,

then $\frac{2y}{2} = \frac{6x}{2} + \frac{10}{2}$ and y = 3x + 5 so the slope of line ℓ is 3 and its y-intercept is 5.

Example 1

An equation of line ℓ is 2y = 3x + 6. Which equation represents a line that is perpendicular to line ℓ ?

(1)
$$y = \frac{3}{2}x + 2$$
 (3) $y = \frac{2}{3}x - 3$

(3)
$$y = \frac{2}{3}x - 3$$

(2)
$$y = -\frac{3}{2}x + 2$$

(2)
$$y = -\frac{3}{2}x + 2$$
 (4) $y = -\frac{2}{3}x - 3$

Solution: Perpendicular lines have slopes that are negative reciprocals. Compare the slope of line ℓ with the slopes of the lines in the answer choices.

• Find the slope of line ℓ . If 2y + 3x = 6, then solving for y gives $y = -\frac{3}{2}x + 3$.

Hence, the slope of line ℓ is $-\frac{3}{2}$.

- The slope of the required line must be $\frac{2}{3}$; the negative reciprocal, $-\frac{3}{2}$.
- Because the slope of the line in answer choice (3) is $\frac{2}{3}$, this line is perpendicular to line ℓ .

The correct choice is (3).

Example 2

The equation of line r is 3y + 6x = 12 and the equation of line s is 8y - 12 = 4x. Which statement is true about lines r and s?

(1) $r \| s$

(3) lines r and s coincide

(2) $r \perp s$

(4) lines r and s have the same y-intercept

Solution: Rewrite each equation in slope-intercept form.

- Line r: 3y + 6x = 12, so 3y = -6x + 12 and y = -2x + 4.
- Line s: 8y 12 = 4x, so 8y = 4x + 12 and $y = \frac{1}{2}x + \frac{3}{2}$.
- The slope of line r is -2, and the slope of line s is $\frac{1}{2}$. Since -2 and $\frac{1}{2}$ are negative reciprocals, $r \perp s$.

The correct choice is (2).

Example 3

Write an equation of the line that passes through the point (-1, 3) and is parallel to the line whose equation is y - 2x = 3.

Solution: If y - 2x = 3, then y = 2x + 3 so the slope of this line is 2.

- Because parallel lines have the same slope, the slope of the required line is also 2, so its equation has the form, y = 2x + b.
- It is also given that (-1, 3) is a point on the line. Find b by substituting x = -1 and y = 3 in y = 2x + b, which gives 3 = 2(-1) + b, so b = 5.
- Since m = 2 and b = 5, an equation of the required line is y = 2x + 5.

Point-Slope Equation: y - k = m(x - h)

In point–slope form, an equation of a line is written as y - k = m(x - h) where (h,k) is any point on the line and m is the slope of the line. If the line that has a slope of -2 passes through the point (4, 3), then its equation can be written in point–slope form by letting h = 4, k = 3, and m = -2:

$$y - k = m(x - h)$$

$$y - 3 = -2(x - 4)$$

If necessary, the equation y - 3 = -2(x - 4) can be written in y = mx + b form by removing the parentheses on the right side of the equation and isolating

$$y-3 = -2(x-4)$$

y-3 = -2x + 8
$$y = -2x + 11$$

Example 4

Write an equation of the line ℓ that passes through (6, -7) and is parallel to the line y - 3x = -4. What is the y-intercept of line ℓ ?

Solution: Let *m* represent the slope of line ℓ and (h, k) represent the coordinates of any point on line ℓ .

- Rewrite y 3x = -4 as y = 3x 4. Because line ℓ is parallel to the given line, the slope of line ℓ is also 3.
- As it is also given that line ℓ passes through (6, -7), (h, k) = (6, -7).
- Write an equation of line ℓ using the point–slope form where h=6, k=-7, and m=3:

$$y-k = m(x-h)$$

$$y-(-7) = 3(x-6)$$

$$y+7 = 3x-18$$

$$y = 3x-25$$

The y-intercept of line ℓ is -25.

Example 5

Find an equation of the line that is the perpendicular bisector of the line segment whose endpoints are R(-8, 7) and S(4, 3).

Solution:

• Find the midpoint (\bar{x}, \bar{y}) of \overline{RS} :

$$\bar{x} = \frac{-8+4}{2} = \frac{-4}{2} = -2$$
 and $\bar{y} = \frac{7+3}{2} = \frac{10}{2} = 5$

The midpoint of \overline{RS} is (-2, 5).

• Find the slope of \overline{RS} :

$$m = \frac{\Delta y}{\Delta x} = \frac{3-7}{4-(-8)} = \frac{-4}{12} = -\frac{1}{3}$$

The slope of the perpendicular bisector of \overline{RS} is the negative reciprocal of $-\frac{1}{3}$ or 3.

• Use the point-slope equation form where $(h, k) = (\bar{x}, \bar{y}) = (-2, 5)$ and m = 3:

$$y-k = m(x-h)$$

 $y-5 = 3(x-(-2))$
 $y-5 = 3(x+2)$

Frequired, the equation can also be written in y = mx + b form:

$$y-5 = 3(x+2)$$

 $y-5 = 3x+6$
 $y = 3x+11$

Example 6

The vertices of $\triangle ABC$ are A(-3, -1), B(1,7), and C(6, -3).

- a. Write an equation of the line that contains the median from C to \overline{AB} .
- b. Write an equation of the line that contains the altitude from A to \overline{BC} .
- c. Prove that the altitude determined in part b, when extended, passes through the point (7, 4).

Solution:

- a. Label the point at which the median from C intersects side \overline{AB} as point M.
- Find the midpoint, $M(\bar{x}, \bar{y})$, of \overline{AB} :

$$\overline{x} = \frac{-3+1}{2}$$
 and $\overline{y} = \frac{-1+7}{2}$

$$= \frac{-2}{2}$$

$$= -1$$

$$= \frac{6}{2}$$

$$= 3$$

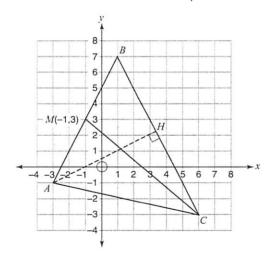
The midpoint is M(-1, 3).

• Find the slope, m, of \overline{CM} :

$$m = \frac{\Delta y}{\Delta x} = \frac{3 - (-3)}{-1 - 6} = -\frac{6}{7}$$

• Use the point–slope equation form where (h, k) = M(-1, 3) and $m = -\frac{6}{7}$

Equation of
$$\overline{CM}$$
: $y-3=-\frac{6}{7}(x-3)$



- b. Label the point at which the altitude intersects \overline{BC} as point H.
- Find the slope, m, of \overline{BC} :

$$m = \frac{\Delta y}{\Delta x} = \frac{-3 - 7}{6 - 1} = \frac{-10}{5} = -2$$

- Find the slope of \overline{AH} . Since $\overline{AH} \perp \overline{BC}$, slope of $\overline{AH} = \frac{1}{2}$.
- Use the point-slope equation form where (h, k) = A(-3, -1) and $m = \frac{1}{2}$:

$$y - (-1) = \frac{1}{2}(x - (-3))$$

Equation of
$$\overline{AH}$$
: $y + 1 = \frac{1}{2}(x + 3)$

If required, the equation can also be written in y = mx + b form:

$$y + 1 = \frac{1}{2}(x + 3)$$

$$y + 1 = \frac{1}{2}x + \frac{3}{2}$$

Slope-intercept form of \overline{AH} : $y = \frac{1}{2}x + \frac{1}{2}$

Show that the point (7, 4) satisfies the equation of \overline{AH} :

$$y = \frac{1}{2}x + \frac{1}{2}$$

$$4 \left| \frac{1}{2}(7) + \frac{1}{2} \right|$$

$$\frac{7}{2} + \frac{1}{2}$$

$$\frac{8}{2}$$

Check Your Understanding of Section 9.4

A. Multiple Choice

- 1. Which line is perpendicular to the line whose equation is 5y + 6 = -3x?

 - (1) $y = -\frac{5}{3}x + 7$ (3) $y = -\frac{3}{5}x + 7$
 - (2) $y = \frac{5}{3}x + 7$ (4) $y = \frac{3}{5}x + 7$
- 2. The graph of x 3y = 6 is parallel to the graph of
 - (1) y = -3x + 7 (3) y = 3x 8
 - (2) $y = -\frac{1}{3}x + 5$ (4) $y = \frac{1}{3}x + 8$
- 3. The graph of which equation is perpendicular to the graph of $y 3 = \frac{1}{2}x$?
 - (1) $y = -\frac{1}{2}x + 5$ (3) y = 2x + 5
 - (2) 2v = x + 3
- (4) y + 2x = 3
- 4. Which is an equation of the line that is parallel to y = 2x 8 and passes through the point (0,-3)?

 - (1) y = 2x + 3 (3) $y = -\frac{1}{2}x + 3$

 - (2) y = 2x 3 (4) $y = -\frac{1}{2}x 3$
- 5. Which is an equation of the line that is parallel to y 3x + 5 = 0 and has the same y-intercept as y = -2x + 7?
 - (1) y = 3x 2
- (3) y = 3x + 7
- (2) y = -2x 5
- (4) v = -2x 7

- B. Show or explain how you arrived at your answer.
- 6. a. Determine an equation of the line that is the perpendicular bisector of the line segment whose endpoints are A(-1, 8) and B(-5, 2).
 - b. Determine the coordinates of the point at which the perpendicular bisector of \overline{AB} intersects the y-axis.
- 7. Write an equation that describes the locus of points equidistant from the lines y = 3x - 1 and y = 3x + 9.
- 8. Given points A(6, 3) and B(2, 2).
 - a. If A' is the image of point A after a reflection over the line y = x, find an equation of $\overline{A'B}$.
 - b. Determine the number of square units in the area of $\triangle ABA'$.
- 9. Kim graphed the line represented by the equation 3y + 2x = 4. Write an equation of a line that is
 - a. Parallel to the line Kim graphed and that contains the point (1, -6).
 - b. Perpendicular to the line Kim graphed and that passes through the origin.
 - c. Neither parallel nor perpendicular to the line Kim graphed and that has the same y-intercept as the line Kim graphed.
- 10. The vertices of $\triangle RST$ are R(2, 7), S(8, 9), and T(6, 3).
 - a. Write an equation of the perpendicular bisector of \overline{RT} .
 - b. Prove that the perpendicular bisector passes through vertex S.
- 11. The vertices of $\triangle ABC$ are A(-4, 1), B(2, 13), and C(10, 9).
 - a. Find the slope of \overline{AB} .
 - b. Write an equation of the line that passes through the midpoint, M, of \overline{BC} and is parallel to \overline{AB} .
 - c. If the line determined in part b intersects side \overline{AC} at point D, the ratio of the length of \overline{DM} to the length of \overline{AB} is
 - (1) 1:1
- (2) 1:2
- (3) 1:3
- (4) 1:4
- 12. The vertices of right triangle ABC are A(3, 3), B(7, 7), and C(7, -1).
 - a. Write an equation of the line which passes through B and is parallel to \overline{AC} .
 - b. If circle O is circumscribed about $\triangle ABC$, find the coordinates of O.
- \square . Given points A(2, 2) and B(6, 3).
 - a. Find the coordinates of A', the image of A after a dilation of constant 4 with respect to the origin. Write an equation of $\overline{AA'}$.
 - b. Find the coordinates of B', the image of B after a reflection in $\overline{AA'}$.
 - c. Show that ABA'B' is not a parallelogram.

- 14. The vertices of $\triangle PQR$ are P(8, 6), Q(-1, 13), and R(5, -5). The median drawn from P intersects \overline{QR} at point M.
 - a. Write an equation of \overline{PM} .
 - b. Using the methods of coordinate geometry, prove that \overline{PM} is perpendicular to \overline{QR} .
 - c. Explain why the median and the altitude to side \overline{QR} of $\triangle PQR$ coincide.
- **15.** Given $\triangle ABC$ with vertices A(3,-1), B(7,3), and C(-1,7), and \overline{CD} is the altitude to \overline{AB} .
 - a. Write an equation of the line that contains altitude \overline{CD} .
 - b. Find the coordinates of the midpoint of \overline{AB} . Show that altitude \overline{CD} intersects \overline{AB} at its midpoint.
- **16.** The coordinates of the vertices of $\triangle ABC$ are A(-6, -8), B(6, 4), and C(-6, 10).
 - a. Write an equation of the altitude from C to \overline{AB} .
 - b. Write an equation of the altitude from B to \overline{AC} .
 - c. Find the *x*-coordinate of the point of intersection of the two altitudes in parts a and b.
- 17. The coordinates of the vertices of $\triangle NYC$ are N(-2, 9), Y(6, 3), and C(4, -7).
 - a. Write an equation of the line that joins the midpoints of sides \overline{NC} and \overline{NC} .
 - b. Write an equation of \overline{YC} .
 - c. Show by means of coordinate geometry that the lines determined material parts a and b are parallel.

9.5 GENERAL EQUATION OF A CIRCLE

In the coordinate plane, the locus of points at a fixed distance of r units from point O(h, k) is a circle centered at (h, k) with radius r. Applying the distance formula:

$$\sqrt{(x-h)^2 + (y-k)^2} = r$$

Squaring both sides gives a general equation of a circle:

$$(x-h)^2 + (y-k)^2 = r^2$$

$\begin{array}{c|c} \hline P(x,y) \\ \hline O(h,k) \end{array}$

Equation of a Circle: Center-Radius Form

The equation $(x - h)^2 + (y - k)^2 = r^2$ describes a circle whose center is at (h, k) with radius r. If the circle is centered at the origin, then h = k = 0 and the equation of the circle simplifies to $x^2 + y^2 = r^2$.

- If the center of a circle is at (2,-1) and its radius is 5, then an equation of the circle is $(x-h)^2 + (y-k)^2 = r^2$, where h=2, k=-1, and r=5. Making the substitutions gives $(x-2)^2 + (y-[-1])^2 = 5^2$ or, equivalently, $(x-2)^2 + (y+1)^2 = 25$.
- The center and radius of a circle can be read from its equation. By rewriting the equation $(x-3)^2 + (y+4)^2 = 36$ in center-radius form, you can determine that h = 3, k = -4, and r = 6:

$$(x-3)^2$$
 + $(y+4)^2 = 36$
 $(x-3)^2$ + $(y-(-4))^2 = 6^2$
 $(x-h)^2$ + $(y-k)^2 = r^2$

Thus, the center of this circle is (3, -4) and its radius is 6.

Example 1

The coordinates of the endpoints of diameter \overline{AB} of circle O are A(1, 2) and $\mathbb{R}[-7, -4)$. Find an equation of circle O.

Solution:

• To find the coordinates (h, k) of the center of the circle, use the midpoint formula:

$$h = \frac{1 + (-7)}{2} = \frac{-6}{2} = -3$$
 and $k = \frac{2 + (-4)}{2} = \frac{-2}{2} = -1$

The coordinates of the center of circle O are, therefore, (-3, -1).

• To find the radius length, use the distance formula to find the distance from the center of the circle to any point on the circle, such as point A. If $(x_1, y_1) = A(1, 2)$ and $(x_2, y_2) = O(-3, -1)$, then

$$OA = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-3 - 1)^2 + (-1 - 2)^2}$$

$$= (-4)^2 + (-3)^2$$

$$= \sqrt{16 + 9}$$

$$= 5$$