Solving Systems by Graphing

Two or more linear equations together form a **system of linear equations**. One way to solve a system of linear equations is by graphing each equation and looking to see if the lines have any point in common. Common points that make each equation true would be a **solution to the system of linear equations**.

Suppose you have \$20 in your bank account and deposit \$5 each week. Your friend has \$5 in her account and deposits \$10 each week. When will you and your friend have the same amount of money in your accounts?

Linear Equations

You: _____

Friend: _____

Coordinate Where the Lines Cross:

What does this mean?

Examples: Solve by Graphing

1. A:
$$y = 2x - 3$$

B:
$$y = x - 1$$

A:

B:

Solution:

2. A: $y = -\frac{1}{2}x + 2$

B: 3y = -9x - 9

A:

B

Determine the Solutions to the System of Equations

A:
$$y = -2x + 1$$

Solution:

B:
$$2y = -4x - 8$$

Solution:

Without Graphing, decide whether each system has one solution, no solutions, or infinitely many solutions

$$y = 2x$$
$$y = 2x - 5$$

$$x + y = 10$$
$$2x + 2y = 8$$

$$y = -3x + 1$$
$$y = 3x + 7$$

$$y = \frac{3}{5}x + 4$$

We can also check our answers on the calculator.

Find the intersection point for each of the following systems of linear equations by using the calculator.

Remember: After you have both lines in Y= ...

CHOOSE 5: Intersect

Get your cursor close to the intersection point and press ENTER 3 TIMES

$$y = x + 2$$

$$y = -2x + 2$$

$$y = x + 4$$

$$y = 4x + 1$$

3.
$$y = \frac{1}{2}x + 1$$
$$y = -3x + 8$$

4.
$$y = -\frac{1}{3}x + 1$$

 $3y = x - 9$

$$3y = x - 9$$

Solving Systems by Graphing

Two or more linear equations together form a **system of linear equations**. One way to solve a system of linear equations is by graphing each equation and looking to see if the lines have any point in common. Common points that make each equation true would be a **solution to the system of linear equations**.

Suppose you have \$20 in your bank account and deposit \$5 each week. Your friend has \$5 in her account and deposits \$10 each week. When will you and your friend have the same amount of money in your accounts?

Linear Equations

Friend:
$$\sqrt{-10x + 5}$$

Coordinate Where the Lines Cross:
$$(3,35)$$
 \$

What does this mean?

Examples: Solve by Graphing

1. A:
$$y = 2x - 3$$

Check:

A:
$$y = 2x - 3$$

 $1 = 2(2) - 3$

2. A:
$$y = -\frac{1}{2}x + 2$$

A:
$$y = -\frac{1}{2}x + 2$$

$$3 = -\frac{1}{2}(-2) + 2$$

$$3 = 1 + 2$$
B:

B:
$$3y = -9x - 9$$

 $3(3) = -9(-2) - 9$
 $9 = 18 - 9$
 $9z9z$

Determine the Solutions to the System of Equations

A:
$$y = -2x + 1$$

Solution:

11 Lines

NO solution

B:
$$\frac{2y}{2} = \frac{-4x - 8}{2}$$

 $\frac{y}{2} = -2x - 4$

Solution:

Some Line

Infinitely Many

Solutions

Without Graphing, decide whether each system has one solution, no solutions, or infinitely many solutions

$$y=2x$$
 $y=2x-5$
 $y=2x-5$
 $y=3x+7$
 $y=3x+4$
 $y=3x+7$
 $y=3x+1$
 $y=3x+7$
 $y=3x+1$
 $y=3x+7$
 $y=3x+1$
 $y=3x+7$
 $y=3x+1$
 $y=3x+7$
 $y=3x+1$
 $y=3x+7$
 $y=3x+1$
 $y=3x+1$
 $y=3x+7$
 $y=3x+1$
 $y=3x+1$
 $y=3x+7$
 $y=3x+1$
 $y=3x+1$

Find the intersection point for each of the following systems of linear equations by using the calculator.

Remember: After you have both lines in Y=

CHOOSE 5: Intersect

Get your cursor close to the intersection point and press 3 TIMES ENTER

2x-5y=20

Y= = = x-4

Slopes

1.
$$y = x + 2$$

 $y = -2x + 2$
2. $y = x + 4$
 $y = 4x + 1$
3. $y = \frac{1}{2}x + 1$
 $y = -3x + 8$
4. $y = -\frac{1}{3}x + 1$
 $3y = x - 9$
 3 3 3
 $7 = \frac{1}{3}x - 3$
(6, -1)