Name:

Topic 4: Rocks and Minerals Part 1: Minerals

What is a Mineral?

- A mineral MUST include these characteristics:
 - Naturally occurring
 - Inorganic: not made from anything that was once living
 - Solid
 - Crystalline structure
 - Have a definite chemical composition that is the same throughout.
 - > The chemical composition tells what elements make up the mineral

Classifying Minerals

- Use **page 16** of Earth Science Reference Tables
- Minerals are classified based upon there:
 - Chemical composition
 - Observable properties which are determined by their <u>internal arrangement of</u> <u>atoms</u>:
 - Color: not the best test (some minerals can be more than one color)
 - Cleavage: breaking along smooth sides (due to weaker atomic bond arrangements)
 - Fracture: no distinct breaking pattern (due to equal bonding of atoms)
 - Streak: color of the mineral when powdered (use a streak plate)
 - > Luster: how it reflects light (metallic or nonmetallic)
 - Crystal Shape: number of sides, pattern
 - > **Special test:** acid test- Ex: calcite bubbles when acid is placed on it
 - Hardness: resistance to scratching

Mah'a	Index Mineral	Scale	Common Objects
Hardness Scale	Diamond	10	
	Corundum	9	
	Topaz	8	
	Quartz	7	Steel file (6.5)
	Orthoclase	6	
	Apatite	5	Glass (5.5) Knife blode (5.1)
	Fluorite	4	Wire Nail (4.5)
	Calcite	3	Penney (3.5) Fingernail (2.5)
	Gypsum	2	
	Talc	1	

Mineral Uses

- The **chemical composition** and **physical properties** determine how minerals are used by humans.
 - For example: Graphite is soft and has a dark gray streak...that is why we use them in pencils.

Part 2: Rocks

What are Rocks?

- Are composed of 1 or more minerals.
- Are classified as **SEDIMENTARY, IGNEOUS**, or **METAMORPHIC** based on their:
 - Origin: how it formed
- Conditions/ environment that existed when a rock formed can be inferred from the rock's mineral content and texture.
- The properties of rocks determine how they are used, and also influence land usage by humans.

Sedimentary Rocks (ESRT Page 7)

- o Clastic Sedimentary Rocks : made from fragments of land-derived sediments
 - Steps on how clastic sedimentary rocks form:
 - 1) Need sediment (broken rock pieces)
 - 2) Erosion: sediment is carried away either by wind, water, gravity
 - 3) Deposition: sediments are dropped and settled
 - 4) After sediments have been deposited, sedimentary rocks can be formed by:
 - a. <u>**Compaction:</u>** As sediments build up, they begin to squeeze together into layers</u>
 - b. <u>**Cementation:**</u> Sediments are "glued" together by dissolved minerals in water

- The sediments are always OLDER than the actual rock.
- Crystalline Sedimentary Rock
 - **Precipitates:** made from dissolved sea shells or minerals sinking to ocean floor
 - Evaporites: when sea water evaporates, the dissolved minerals in the water are left behind and form a rock
 - Ex: Rock Salt, Rock Gypsum, Dolostone
- Bioclastic Sedimentary Rock: made from organic (once living) materials
 - Ex: Coal- made from plants
- o Some sedimentary rocks can be Crystalline or bioclastic
 - Ex: Limestone- made from fossil sea shells

Igneous Rocks (ESRT Page 6)

- Igneous rocks form due to **melting** and **solidification of lava or magma**.
 - Lava: above Earth's surface
 - Magma: below Earth's surface
- Igneous rocks are made up of **intergrown crystals** of minerals.
 - The size of these intergrown crystals is determined by the cooling rate of the molten material.
 - > The **slower** the magma cools, the **larger** the mineral crystals.
 - > The **faster** the magma cools, the **smaller** the mineral crystals.
 - Igneous rocks can be **intrusive** or **extrusive**.

Type of Igneous Rock	Where it forms	Forms from	Rate of Cooling	Size of crystals
Intrusive	Below Earth's surface	Magma	Slow	Large
Extrusive	Above Earth's surface	Lava	Fast	Small

- **Vesicular**: Igneous rock with gas pockets in it
- **Glassy**: Igneous rock that is non-crystalline (no mineral crystals)

Metamorphic Rocks (ESRT Page 7)

- o Rocks that have changed in form due to heat and pressure
 - Heat comes from inside the Earth.
 - Pressure comes when Earth's plates slide or push together and from the weight of layers pushing down on top of one another.
- Two types of Metamorphism
 - Regional Metamorphism:
 - Tectonic plates collide, creating heat and pressure, which transforms the rocks
 - Regional means over a large area (km's)
 - Contact Metamorphism: when older rocks come in contact with hot magma

Contact Metamorphism					
Slate Shale					
Limestone		Marble			
Quartz Sandstone Shale	Magma	Quartzite Hornfels			

- o Types of Metamorphic Rock
 - Foliated Metamorphic Rocks: have bands or layers of mineral crystals that formed under heat and pressure
 - Nonfoliated Metamorphic Rock: do not have bands or layers because minerals are not flat and were not subjected to a directional pressure

- **1.** Follow the arrow from sedimentary rock to metamorphic rock. What processes are necessary to change a sedimentary rock to a metamorphic rock? **Heat and/or pressure**
- 2. Follow the arrow from sediments to sedimentary rock. How do sediments become sedimentary rock? **Deposition, burial, compaction, and cementation**
- 3. How does magma form? From melting rock
- 4. How does magma become an igneous rock? From solidification
- 5. How does an igneous rock become a metamorphic rock? Heat and/or pressure
- 6. How does a metamorphic rock become an igneous rock? Melting to magma, then solidification
- 7. How do sediments form? Uplift, weathering, and erosion