8-1 Zero and Negative Exponents

1. Fill in the table with the value of the power in simplest form.

2×	5×	10×
24 =	54 =	104 =
23 =	53 =	103 =
22 =	52 =	102 =

- 2. Look at the values you just calculated. What pattern do you see as you go down each column?
- 3. Continue filling in the table below with the value of the power in simplest form. **Write** using Fractions instead of Decimals if necessary.

2×	5×	10×
21 =	51 =	101 =
20 =	50 =	100 =
2-1 =	5-1 =	10-1 =
2-2 =	5-2 =	10-2 =
2-3 =	5-3 =	10-3 =

Finish the statement:

Any term raised to the 0 power equals _____

Any term raised to the 1 power equals _____

Practice:

$$\left(\frac{4}{17}\right)^0 = \left(-y\right)^1 = \left(4xy\right)^0 = \left(\frac{y}{x^2}\right)^1 = 1,324,452^0 =$$

When possible, you can use the calculator to evaluate these expressions. Any expression that contains VARIABLES CANNOT BE EVALUATED USING THE CALCULATOR.

$$\left(\frac{2}{7}\right)^{-2} = -\left(-6\right)^{-3} = \left(-4\right)^2 = \left(-3\right)^{-3} 5^2 = \left(-9\right)^2 3^{-3} =$$

Negative exponents are hard to work with when we are dealing with variables. So we want to simplify these expressions to make each variable have a positive exponent. Examine these completed examples to see if we can see how to deal with these expressions.

EX1: Helpful Hints To Remember:

$$4a^2b^{-3} = \frac{4a^2}{b^3}$$

EX2:

$$\frac{w^5 x^{-3}}{5 y^{-6}} = \frac{w^5 y^6}{5 x^3}$$

EX3:

$$\frac{2^{-2}r^{-3}}{s^2} = \frac{1}{4r^3s^2}$$

Let's Try a Bunch

1.
$$\frac{5^{-2}}{p}$$
 2. $a^{-4}c^0$ 3. $\frac{3x^{-2}}{y}$

4.
$$\frac{7ab^{-2}}{3w}$$
 5. $x^{-5}y^{-7}$ 6. $x^{-5}y^{7}$

7.
$$\frac{8}{2c^{-3}}$$
 8. $\frac{7s}{5t^{-3}}$ 9. $\frac{6a^{-1}c^{-3}}{d^0}$

10.
$$2^{-3}x^2z^{-7}$$
 11. $9^0y^7t^{-11}$ 12. $\frac{7s^0t^{-5}}{2^{-1}m^2}$

Simplify each expression using positive exponents:

a)
$$4^{-2} =$$

b)
$$(-3)^{-3} =$$

c)
$$5^{-2} =$$

d)
$$5m^3n^{-2}o^{-5} =$$

e)
$$\frac{x^{-4}}{b^{-6}}$$
 =

f)
$$\frac{a^{-3}}{2^7}$$

2. Simplify each expression:

a)
$$\left(\frac{4}{5}\right)^1 =$$

b)
$$(elephants)^0 =$$
_____ c) $(-846)^0 =$ _____

c)
$$(-846)^0 =$$

3. Evaluate $5a^3b^{-2}$ for a = 2 and b = 4.

Challenge:

(Hint: If you get common denominators, you can add the fractions together)

4.
$$\frac{6}{m^2} + \frac{5m^{-2}}{3^{-3}}$$