11-1a Simplifying Radicals

adical symbol $\sqrt{\ }$ indicates a square root. The expression under the radical sign is the radicand. If the radicand is a <u>perfect square</u>, the result will be an integer (Ex. $\sqrt{16} = 4$). You will need to memorize the perfect squares in order to simplify radicals that are not perfect squares.

The number 50 is not a perfect square, so if you evaluate $\sqrt{50}$ you get 7.071067812.

The important thing to remember is that each of these radicals will have a decimal equal to it. Considering this fact, answer the following multiple choice Regents Question.

Example

- 1. What is $2\sqrt{45}$ expressed in simplest radical form?
- (1) $3\sqrt{5}$
- (2) $5\sqrt{5}$

(4) $18\sqrt{5}$

The reason we want to Simplify Radicals is the same reason why we reduce fractions into their lowest terms. You can simplify a radical expression by removing the perfect-square factors from the radicand. To do this we use:

Multiplication Property of Square Roots

For every number, $a \ge 0$, and $b \ge 0$,

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$

- 1. Start by dividing the radicand by 2. Continue with 3, 4, etc. until a perfect square appears.
- 2. Split the Square Root into two separate square roots, with the first being the perfect square.
- 3. Simplify the Perfect Square root.

Perfect

Squares

Variable

Square Roots

Practice:

$1.\sqrt{192}$

$$2. \sqrt{98}$$

$$\sqrt{1} = 1$$

$$\sqrt{x} = \chi^{5} = \sqrt{\chi}$$

$$\sqrt{4} = 2$$

$$\sqrt{x^2} = (X^1)$$

$$\sqrt{9} = 3$$

$$\sqrt{x^3} = \chi^{0.5} = \chi \chi \chi$$

4.
$$\sqrt{75}$$

$$\sqrt{16} = 4$$

$$\sqrt{x^4} = \sqrt{2}$$

$$\sqrt{25} = 5$$

$$\sqrt{36} = 6$$

$$\sqrt{x^5} = \chi^{2.5} \left(\chi^2 \right) \times \sqrt{x^6} = \left(\chi^3 \right)$$

$$\sqrt{49} = 7$$

$$\sqrt{x^7} = \chi^{3.5} = \chi^{3} \sqrt{x}$$

$$\sqrt{108b^4}$$

$$\sqrt{81} = 9$$

 $\sqrt{64} = 8$

$$\sqrt{x^8} = \sqrt{4}$$

662 J3

$$\sqrt{100} = 10$$

$$\sqrt{x^9} = \chi^{4.5} \left(\chi^{4} \sqrt{\chi} \right)$$

$$\sqrt{|z|} = 11$$

 $\sqrt{144} = 12$

 $\sqrt{169} = 13$

 $\sqrt{196} = 14$

$$\sqrt{x^{10}} = (\chi^5)$$

6.
$$3\sqrt{12x^5}$$

$$\sqrt{225} = 15$$

$$\sqrt{256} = 16$$

¹. What is $3\sqrt{250}$ expressed in simplest radical form?

- (1) $5\sqrt{10}$
- (2) $8\sqrt{10}$
- (3) $15\sqrt{10}$
- (4) $75\sqrt{10}$

2. What is $\sqrt{72}$ expressed in simplest radical form?

- (1) $2\sqrt{18}$
- (2) $3\sqrt{8}$

(3) $6\sqrt{2}$

(4) $8\sqrt{3}$

Simplify each Radical.

3.
$$\sqrt{200}$$

4.
$$\sqrt{28}$$

$$5. \sqrt{147}$$

6.
$$\sqrt{320}$$

$$7. \sqrt{20a^5}$$

8.
$$\sqrt{96x^8y^3}$$